APPENDIX D – CLIMATE AND AIR QUALITY SUPPORTING DATA

D.1 Emissions Summary Tables – Transmission Line and Series Compensation Station Construction

TABLE D-1 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR				
CKITEK			O-B AND ROUTE	
Pollutant				Tons Per Mile of Transmission Line
			thmoving and Gra	
PM_{10}	127.30	157.3	0.00	1.390
PM _{2.5}	12.70	15.7	0.00	0.140
	Paved and U	npaved Road Dus	st – Conventional S	teel Erection Option ¹
PM_{10}	2,444.80	4,570.1	965.30	39.020
$PM_{2.5}$	246.00	459.9	97.10	3.930
	Paved and Unp	aved Road Dust -	- Steel Erection Us	ing Helicopters Option ¹
PM_{10}	2,522.80	4,404.4	895.60	38.250
$PM_{2.5}$	253.90	443.2	90.10	3.850
		Engine Emissions -	- Conventional Ste	el Erection Option ¹
CO	26.80	54.7	6.60	0.430
NO_x	24.20	49.6	5.90	0.390
PM_{10}	1.60	3.2	0.40	0.030
$PM_{2.5}$	1.60	3.2	0.40	0.030
SO_2	0.10	0.3	0.03	0.002
VOC	1.80	3.8	0.40	0.030
	Nonroad Eng	gine Emissions – S	Steel Erection Usin	g Helicopters Option ¹
CO	25.70	43.8	5.10	0.370
NO_x	23.10	38.9	4.50	0.320
PM_{10}	1.60	2.6	0.30	0.020
$PM_{2.5}$	1.60	2.6	0.30	0.020
SO_2	0.10	0.2	0.02	0.002
VOC	1.80	3.0	0.30	0.020
	Helicop	ter Emissions – C	onventional Steel I	Erection Option ¹
CO	0.20	2.2	0.40	0.010
NO_x	0.30	3.1	0.50	0.020
PM_{10}	0.01	0.1	0.02	0.001
$PM_{2.5}$	0.01	0.1	0.02	0.001
SO_2	0.04	0.4	0.10	0.003
VOC	0.20	1.8	0.30	0.010
				lelicopters Option ¹
CO	1.30	2.3	0.40	0.020
NO_x	2.20	3.4	0.50	0.030
PM_{10}	0.10	0.1	0.02	0.001
PM _{2.5}	0.10	0.1	0.02	0.001
SO_2	0.30	0.4	0.10	0.004
VOC	1.00	1.9	0.30	0.020

	TABLE D-1					
CRITERI	CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR					
	ALTE		O-B AND ROUTE	VARIATIONS		
Pollutant	Year 1 (tons)					
	Traffi	c Emissions – Cor	nventional Steel Er	rection Option ¹		
CO	2.90	5.8	0.80	0.050		
NO_x	5.70	11.5	1.60	0.090		
PM_{10}	0.40	0.8	0.10	0.010		
$PM_{2.5}$	0.30	0.6	0.10	0.010		
SO_2	0.04	0.1	0.01	0.001		
VOC	0.90	1.6	0.30	0.010		
	Traffic I	Emissions – Steel	Erection Using He	licopters Option ¹		
CO	2.90	5.4	0.70	0.040		
NO_x	5.80	10.9	1.50	0.090		
PM_{10}	0.40	0.7	0.10	0.010		
PM _{2.5}	0.30	0.6	0.10	0.005		
SO_2	0.04	0.1	0.01	0.001		
VOC	0.90	1.5	0.30	0.010		

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers SO_2 = Sulfur dioxide

	TABLE D-2					
CRITERI	CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE WYCO-C AND ROUTE VARIATIONS					
Pollutant	Year 1 (tons)	\ /	` /			
	Fugiti	ve Dust from Ear	thmoving and Gra	ding Activities		
PM_{10}	130.20	160.90	0.00	1.380		
$PM_{2.5}$	13.00	16.10	0.00	0.140		
	Paved and U	npaved Road Dus	st – Conventional S	teel Erection Option ¹		
PM_{10}	2,515.30	4,701.90	993.10	39.020		
PM _{2.5}	253.10	473.10	99.90	3.930		
	Paved and Unp	aved Road Dust -	- Steel Erection Us	ing Helicopters Option ¹		
PM_{10}	2,595.50	4,531.50	921.50	38.250		
$PM_{2.5}$	261.20	456.00	92.70	3.850		
	Nonroad E	ngine Emissions -	- Conventional Ste	el Erection Option ¹		
CO	27.60	56.30	6.70	0.430		
NO_x	24.90	51.00	6.10	0.390		
PM_{10}	1.70	3.30	0.40	0.030		
PM _{2.5}	1.70	3.30	0.40	0.030		
SO_2	0.10	0.30	0.03	0.002		
VOC	1.90	3.90	0.50	0.030		

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

TABLE D-2							
CRITERI	CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE WYCO-C AND ROUTE VARIATIONS						
Pollutant				Tons Per Mile of Transmission Line			
1 Onutant	Pollutant Year 1 (tons) Year 2 (tons) Year 3 (tons) Tons Per Mile of Transmission Line Nonroad Engine Emissions – Steel Erection Using Helicopters Option ¹						
CO	26.40	45.10	5.30	0.370			
NO _x	23.80	40.00	4.60	0.320			
PM_{10}	1.60	2.70	0.30	0.020			
PM _{2.5}	1.60	2.70	0.30	0.020			
SO_2	0.10	0.20	0.02	0.002			
VOC	1.80	3.10	0.30	0.020			
	Helicop	ter Emissions – C	onventional Steel I	Erection Option ¹			
CO	0.20	2.20	0.40	0.010			
NO _x	0.30	3.20	0.50	0.020			
PM_{10}	0.01	0.10	0.02	0.001			
PM _{2.5}	0.01	0.10	0.02	0.001			
SO_2	0.04	0.40	0.10	0.003			
VOC	0.20	1.80	0.30	0.010			
			el Erection Using H				
CO	1.30	2.40	0.40	0.020			
NO_x	2.20	3.50	0.50	0.030			
PM_{10}	0.10	0.10	0.02	0.001			
PM _{2.5}	0.10	0.10	0.02	0.001			
SO_2	0.30	0.50	0.10	0.004			
VOC	1.00	2.00	0.30	0.020			
			nventional Steel Er	*			
CO	2.90	6.00	0.80	0.050			
NO_x	5.90	11.80	1.60	0.090			
PM_{10}	0.40	0.80	0.10	0.010			
PM _{2.5}	0.30	0.60	0.10	0.010			
SO ₂	0.04	0.10	0.01	0.001			
VOC	0.90	1.70	0.30	0.010			
GO			Erection Using He				
CO	3.00	5.60	0.80	0.040			
NO _x	5.90	11.20	1.50	0.090			
PM ₁₀	0.40	0.70	0.10	0.010			
PM _{2.5}	0.30	0.60	0.10	0.005			
SO ₂	0.04	0.06	0.01	0.001			
VOC	0.90	1.60	0.30	0.010			

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

CO = Carbon monoxide

 NO_x = Nitrogen oxides

 $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers

 $SO_2 = Sulfur dioxide$

TABLE D-3 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR						
	ALTEI	RNATIVE WYC	O-D AND ROUTE			
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line		
			thmoving and Gra			
PM_{10}	153.60	189.8	0.0	1.370		
PM _{2.5}	15.40	19.0	0.0	0.140		
				teel Erection Option ¹		
PM_{10}	2.988.70	5,586.9	1,180.1	39.020		
PM _{2.5}	300.70	562.2	118.7	3.930		
				ing Helicopters Option ¹		
PM_{10}	3,084.10	5,384.4	1,094.9	38.250		
PM _{2.5}	310.30	541.8	110.2	3.850		
				el Erection Option ¹		
CO	32.80	66.8	8.00	0.430		
NO_x	29.60	60.6	7.20	0.390		
PM_{10}	2.00	3.9	0.50	0.030		
$PM_{2.5}$	2.00	3.9	0.50	0.030		
SO_2	0.10	0.3	0.03	0.002		
VOC	2.30	4.6	0.50	0.030		
	Nonroad Eng	ine Emissions – S	Steel Erection Usin	g Helicopters Option ¹		
CO	31.40	53.6	6.30	0.370		
NO_x	28.20	47.5	5.50	0.320		
PM_{10}	1.90	3.2	0.40	0.020		
PM _{2.5}	1.90	3.2	0.40	0.020		
SO_2	0.10	0.3	0.03	0.002		
VOC	2.20	3.6	0.40	0.020		
	Helicopt	ter Emissions – C	Conventional Steel	Erection Option ¹		
CO	0.30	2.7	0.40	0.010		
NO _x	0.40	3.8	0.60	0.020		
PM_{10}	0.01	0.1	0.02	0.001		
PM _{2.5}	0.01	0.1	0.02	0.001		
SO_2	0.10	0.5	0.10	0.003		
VOC	0.20	2.2	0.40	0.010		
	Helicopter	Emissions – Ste	el Erection Using H	Ielicopters Option ¹		
CO	1.50	2.9	0.40	0.020		
NO _x	2.60	4.2	0.60	0.030		
PM_{10}	0.10	0.1	0.02	0.001		
PM _{2.5}	0.10	0.1	0.02	0.001		
SO_2	0.30	0.5	0.10	0.004		
VOC	1.20	2.3	0.40	0.020		
	Traffic Emissions – Conventional Steel Erection Option ¹					
СО	3.50	7.1	1.00	0.050		
NO _x	7.00	14.0	1.90	0.090		
PM_{10}	0.50	0.9	0.10	0.010		
PM _{2.5}	0.40	0.8	0.10	0.010		
SO ₂	0.10	0.1	0.02	0.001		
VOC	1.10	2.0	0.30	0.010		
	1.10	2.0	0.50	0.010		

TABLE D-3 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR					
Pollutant	ALTEI Year 1 (tons)	RNATIVE WYC Year 2 (tons)	O-D AND ROUTE Year 3 (tons)	VARIATIONS Tons Per Mile of Transmission Line	
1 onutant	` /	. ,	Erection Using Hel		
CO	3.50	6.6	0.90	0.040	
NO _x	7.10	13.3	1.80	0.090	
PM_{10}	0.50	0.9	0.10	0.010	
$PM_{2.5}$	0.40	0.7	0.10	0.005	
SO_2	0.10	0.1	0.02	0.001	
VOC	1.10	1.9	0.30	0.010	

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers

 $SO_2 = Sulfur dioxide$

		7	TABLE D-4			
CRITER	CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR					
	ALTE	RNATIVE WYC	O-F AND ROUTE	_		
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line		
	Fugiti	ve Dust from Ear	thmoving and Gra	ding Activities		
PM_{10}	135.10	166.9	0.00	1.380		
$PM_{2.5}$	13.50	16.7	0.00	0.140		
	Paved and U	npaved Road Dus	st – Conventional S	teel Erection Option ¹		
PM_{10}	2,616.90	4,891.9	1,033.30	39.020		
$PM_{2.5}$	263.30	492.2	104.00	3.930		
	Paved and Unp	aved Road Dust	 Steel Erection Us 	ing Helicopters Option ¹		
PM_{10}	2,700.40	4,714.5	958.70	38.250		
$PM_{2.5}$	271.70	474.4	96.50	3.850		
	Nonroad E	ngine Emissions	 Conventional Ste 	el Erection Option ¹		
CO	28.70	58.5	7.00	0.430		
NO_x	25.90	53.1	6.30	0.390		
PM_{10}	1.70	3.4	0.40	0.030		
$PM_{2.5}$	1.70	3.4	0.40	0.030		
SO_2	0.10	0.3	0.03	0.002		
VOC	2.00	4.0	0.50	0.030		
	Nonroad Engine Emissions – Steel Erection Using Helicopters Option ¹					
CO	27.50	46.9	5.50	0.370		
NO_x	24.70	41.6	4.80	0.320		
PM_{10}	1.70	2.8	0.30	0.020		
PM _{2.5}	1.70	2.8	0.30	0.020		
SO_2	0.10	0.2	0.02	0.002		
VOC	1.90	3.2	0.40	0.020		

TABLE D-4 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE WYCO-F AND ROUTE VARIATIONS					
Pollutant			Year 3 (tons)		
2 022000	. /	. ,	Conventional Steel 1		
CO	0.20	2.3	0.40	0.010	
NO _x	0.30	3.4	0.60	0.020	
PM_{10}	0.01	0.1	0.02	0.001	
PM _{2.5}	0.01	0.1	0.02	0.001	
SO_2	0.04	0.4	0.10	0.003	
VOC	0.20	1.9	0.30	0.010	
	Helicopter	Emissions – Ste	el Erection Using H	Ielicopters Option ¹	
CO	1.30	2.5	0.40	0.020	
NO_x	2.30	3.7	0.60	0.030	
PM_{10}	0.10	0.1	0.02	0.001	
$PM_{2.5}$	0.10	0.1	0.02	0.001	
SO_2	0.30	0.5	0.10	0.004	
VOC	1.10	2.0	0.30	0.020	
	Traffi	c Emissions – Co	nventional Steel Er	rection Option ¹	
CO	3.10	6.2	0.90	0.050	
NO_x	6.10	12.3	1.70	0.090	
PM_{10}	0.40	0.8	0.10	0.010	
$PM_{2.5}$	0.30	0.7	0.10	0.010	
SO_2	0.05	0.1	0.01	0.001	
VOC	1.00	1.7	0.30	0.010	
Traffic Emissions – Steel Erection Using Helicopters Option ¹					
CO	3.10	5.8	0.80	0.040	
NO _x	6.20	11.6	1.60	0.090	
PM_{10}	0.40	0.8	0.10	0.010	
PM _{2.5}	0.30	0.6	0.10	0.005	
SO_2	0.05	0.1	0.01	0.001	
VOC	1.00	1.6	0.30	0.010	

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers SO_2 = Sulfur dioxide

TABLE D-5 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR				
			TIVE COUT BAX	
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line
			thmoving and Gra	U
PM ₁₀	130.5	260.9	25.10	1.490
PM _{2.5}	13.0	26.1	2.50	0.150
				Steel Erection Option ¹
PM_{10}	3,337.8	6,239.4	1,317.90	39.020
PM _{2.5}	335.9	627.8	132.60	3.930
				ing Helicopters Option ¹
PM_{10}	3,444.3	6,013.3	1,222.80	38.250
PM _{2.5}	346.6	605.1	123.00	3.850
				el Erection Option ¹
CO	68.7	149.5	20.20	0.850
NO_x	29.4	83.4	18.30	0.470
PM_{10}	2.7	6.6	1.20	0.040
PM _{2.5}	2.7	6.6	1.20	0.040
SO_2	0.1	0.4	0.10	0.002
VOC	5.4	11.3	1.40	0.060
	Nonroad Eng	ine Emissions – S	Steel Erection Usin	g Helicopters Option ¹
CO	68.4	140.2	20.20	0.820
NO_x	29.1	74.2	18.30	0.440
PM_{10}	2.6	6.1	1.20	0.040
$PM_{2.5}$	2.6	6.1	1.20	0.040
SO_2	0.1	0.3	0.10	0.002
VOC	5.4	10.7	1.40	0.060
	Helicopt	ter Emissions – C	Conventional Steel 1	Erection Option ¹
CO	0.0	2.5	1.40	0.010
NO _x	0.0	3.6	2.00	0.020
PM_{10}	0.0	0.1	0.10	0.001
PM _{2.5}	0.0	0.1	0.10	0.001
SO_2	0.0	0.5	0.30	0.003
VOC	0.0	2.0	1.10	0.010
	Helicopter	Emissions – Ste	el Erection Using H	Ielicopters Option ¹
CO	0.0	4.1	1.40	0.020
NO _x	0.0	6.5	2.00	0.030
PM_{10}	0.0	0.2	0.10	0.001
PM _{2.5}	0.0	0.2	0.10	0.001
SO_2	0.0	0.8	0.30	0.004
VOC	0.0	3.4	1.10	0.020
			nventional Steel Er	
CO	2.9	9.2	2.50	0.050
NO _x	6.1	18.7	4.90	0.110
PM_{10}	0.4	1.3	0.30	0.010
PM _{2.5}	0.3	1.0	0.30	0.010
SO ₂	0.1	0.1	0.04	0.001
VOC	1.1	2.8	0.80	0.02
, 00	1.1	2.0	0.00	0.02

CRITERI	TABLE D-5 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR					
		ALTERNA	TIVE COUT BAX	- B		
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line		
	Traffic I	Emissions – Steel	Erection Using Hel	licopters Option ¹		
CO	2.9	8.9	2.30	0.050		
NO_x	6.1	18.3	4.60	0.100		
PM_{10}	0.4	1.2	0.30	0.010		
PM _{2.5}	0.3	1.0	0.30	0.010		
SO_2	0.1	0.1	0.04	0.001		
VOC	1.1	2.7	0.70	0.020		

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers

 $SO_2 = Sulfur dioxide$

		7	TABLE D-6			
CRITER	CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR					
			TIVE COUT BAX	-C		
Pollutant	Year 1 (tons)		Year 3 (tons)	Tons Per Mile of Transmission Line		
		ve Dust from Ear	thmoving and Gra	ding Activities		
PM_{10}	133.1	266.2	25.60	1.470		
PM _{2.5}	13.3	26.6	2.60	0.150		
	Paved and U	npaved Road Dus	st – Conventional S	teel Erection Option ¹		
PM_{10}	3,463.3	6,474.1	1,367.50	39.020		
$PM_{2.5}$	348.5	651.5	137.60	3.930		
	Paved and Unp	aved Road Dust	- Steel Erection Us	ing Helicopters Option ¹		
PM_{10}	3,573.8	6,239.4	1,268.80	38.250		
$PM_{2.5}$	359.6	627.8	127.70	3.850		
	Nonroad E	ngine Emissions	 Conventional Ste 	el Erection Option ¹		
CO	71.3	155.1	21.00	0.850		
NO_x	30.5	86.5	19.00	0.470		
PM_{10}	2.8	6.9	1.30	0.040		
$PM_{2.5}$	2.8	6.9	1.30	0.040		
SO_2	0.1	0.4	0.10	0.002		
VOC	5.6	11.8	1.40	0.060		
	Nonroad Engine Emissions – Steel Erection Using Helicopters Option ¹					
CO	70.9	145.4	21.00	0.820		
NO_x	30.2	77.0	19.00	0.440		
PM_{10}	2.7	6.3	1.30	0.040		
PM _{2.5}	2.7	6.3	1.30	0.040		
SO_2	0.1	0.4	0.10	0.002		
VOC	5.6	11.1	1.40	0.060		

TABLE D-6 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT BAX-C					
Pollutant	Year 1 (tons)	\ /	Year 3 (tons)	Tons Per Mile of Transmission Line	
	Helicop	ter Emissions – C	Conventional Steel I	Erection Option ¹	
CO	0.0	2.6	1.40	0.010	
NO_x	0.0	3.7	2.10	0.020	
PM_{10}	0.0	0.1	0.10	0.001	
PM _{2.5}	0.0	0.1	0.10	0.001	
SO_2	0.0	0.5	0.30	0.003	
VOC	0.0	2.1	1.20	0.010	
	Helicopter	r Emissions – Ste	el Erection Using H	Ielicopters Option ¹	
CO	0.0	4.3	1.40	0.020	
NO_x	0.0	6.8	2.10	0.030	
PM_{10}	0.0	0.2	0.10	0.001	
$PM_{2.5}$	0.0	0.2	0.10	0.001	
SO_2	0.0	0.8	0.30	0.004	
VOC	0.0	3.5	1.20	0.020	
	Traffi	c Emissions – Co	nventional Steel Er	rection Option ¹	
CO	3.0	9.5	2.60	0.050	
NO_x	6.4	19.4	5.00	0.110	
PM_{10}	0.4	1.3	0.30	0.010	
$PM_{2.5}$	0.4	1.1	0.30	0.010	
SO_2	0.1	0.1	0.04	0.001	
VOC	1.1	2.9	0.80	0.020	
Traffic Emissions – Steel Erection Using Helicopters Option ¹					
CO	3.0	9.2	2.40	0.050	
NO_x	6.4	19.0	4.70	0.100	
PM_{10}	0.4	1.3	0.30	0.010	
PM _{2.5}	0.4	1.0	0.30	0.010	
SO_2	0.1	0.1	0.04	0.001	
VOC	1.1	2.8	0.80	0.020	

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers SO_2 = Sulfur dioxide

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

		7	TABLE D-7	
CRITER	IA POLLUTANT		OR TRANSMISSIC	ON LINE CONSTRUCTION FOR
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line
	` ′	` ′	thmoving and Gra	
PM_{10}	129.9	259.8	25.00	1.420
PM _{2.5}	13.0	26.0	2.50	0.140
210	Paved and U	npaved Road Dus	st – Conventional S	teel Erection Option ¹
PM_{10}	3,484.9	6,514.3	1,376.00	39.020
PM _{2.5}	350.7	655.5	138.50	3.930
-10	Paved and Unp	aved Road Dust	- Steel Erection Us	ing Helicopters Option ¹
PM_{10}	3,596.0	6.278.2	1,276.60	38.250
PM _{2.5}	361.8	631.7	128.50	3.850
	Nonroad E	ngine Emissions	- Conventional Ste	el Erection Option ¹
CO	71.7	156.1	21.10	0.850
NO _x	30.7	87.1	19.10	0.470
PM_{10}	2.8	6.9	1.30	0.040
PM _{2.5}	2.8	6.9	1.30	0.040
SO_2	0.1	0.4	0.10	0.002
VOC	5.6	11.8	1.40	0.060
	Nonroad Eng	gine Emissions – S	Steel Erection Usin	g Helicopters Option ¹
CO	71.4	146.3	21.10	0.820
NO_x	30.4	77.4	19.10	0.440
PM_{10}	2.7	6.4	1.30	0.040
PM _{2.5}	2.7	6.4	1.30	0.040
SO_2	0.1	0.4	0.10	0.002
VOC	5.6	11.1	1.40	0.060
	Helicop	ter Emissions – C	Conventional Steel I	Erection Option ¹
CO	0.0	2.6	1.40	0.010
NO_x	0.0	3.7	2.10	0.020
PM_{10}	0.0	0.1	0.10	0.001
PM _{2.5}	0.0	0.1	0.10	0.001
SO_2	0.0	0.5	0.30	0.003
VOC	0.0	2.1	1.20	0.010
	Helicopter	Emissions – Stee	el Erection Using H	Ielicopters Option ¹
CO	0.0	4.3	1.40	0.020
NO _x	0.0	6.8	2.10	0.030
PM_{10}	0.0	0.2	0.10	0.001
PM _{2.5}	0.0	0.2	0.10	0.001
SO_2	0.0	0.8	0.30	0.004
VOC	0.0	3.5	1.20	0.020
		c Emissions – Co	nventional Steel Er	
CO	3.0	9.6	2.60	0.050
NO_x	6.4	19.5	5.10	0.110
PM_{10}	0.5	1.3	0.40	0.010
PM _{2.5}	0.4	1.1	0.30	0.010
SO_2	0.1	0.1	0.04	0.001
VOC	1.1	2.9	0.80	0.020

TABLE D-7 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT BAX-E					
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line	
	Traffic I	Emissions – Steel	Erection Using Hel	licopters Option ¹	
CO	3.0	9.3	2.40	0.050	
NO _x	6.4	19.1	4.80	0.100	
PM_{10}	0.5	1.3	0.30	0.010	
PM _{2.5}	0.4	1.1	0.30	0.010	
SO_2	0.1	0.1	0.04	0.001	
VOC	1.1	2.9	0.80	0.020	

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers

 $SO_2 = Sulfur dioxide$

		Т	ABLE D-8			
CRITER	CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR					
			T-A AND ROUTE			
Pollutant	Year 1 (tons)	()	Year 3 (tons)	Tons Per Mile of Transmission Line		
			thmoving and Gra			
PM_{10}	102.40	204.8	19.70	1.590		
PM _{2.5}	10.20	20.5	2.00	0.160		
				teel Erection Option ¹		
PM_{10}	2,462.70	4,603.6	972.40	39.020		
$PM_{2.5}$	247.80	463.2	97.80	3.930		
	Paved and Unp	aved Road Dust -	- Steel Erection Us	ing Helicopters Option ¹		
PM_{10}	2,541.30	4,436.7	902.20	38.250		
$PM_{2.5}$	255.70	446.4	90.80	3.850		
	Nonroad E	ngine Emissions -	- Conventional Ste	el Erection Option ¹		
CO	50.70	110.3	14.90	0.850		
NO_x	21.70	61.5	13.50	0.470		
PM_{10}	2.00	4.9	0.90	0.040		
$PM_{2.5}$	2.00	4.9	0.90	0.040		
SO_2	0.10	0.3	0.10	0.002		
VOC	4.00	8.4	1.00	0.060		
Nonroad Engine Emissions – Steel Erection Using Helicopters Option ¹						
CO	50.40	103.4	14.90	0.820		
NO_x	21.50	54.7	13.50	0.440		
PM_{10}	1.90	4.5	0.90	0.040		
PM _{2.5}	1.90	4.5	0.90	0.040		
SO_2	0.10	0.3	0.10	0.002		
VOC	4.00	7.9	1.00	0.060		

TABLE D-8 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT-A AND ROUTE VARIATION								
Pollutant			Year 3 (tons)					
Tonutunt	Helicopter Emissions – Conventional Steel Erection Option ¹							
СО	0.00	1.8	1.00	0.010				
NO _x	0.00	2.6	1.50	0.020				
PM_{10}	0.00	0.1	0.04	0.001				
PM _{2.5}	0.00	0.1	0.04	0.001				
SO_2	0.00	0.3	0.20	0.003				
VOC	0.00	1.5	0.80	0.010				
	Helicopter	Emissions – Stee	el Erection Using H	lelicopters Option ¹				
СО	0.00	3.1	1.00	0.020				
NO _x	0.00	4.8	1.50	0.030				
PM_{10}	0.00	0.1	0.04	0.001				
PM _{2.5}	0.00	0.1	0.04	0.001				
SO_2	0.00	0.6	0.20	0.004				
VOC	0.00	2.5	0.80	0.020				
	Traffi	c Emissions – Co	nventional Steel Er	rection Option ¹				
CO	2.10	6.8	1.80	0.050				
NO_x	4.50	13.8	3.60	0.110				
PM_{10}	0.30	0.9	0.20	0.010				
$PM_{2.5}$	0.30	0.8	0.20	0.010				
SO_2	0.04	0.1	0.03	0.001				
VOC	0.80	2.1	0.60	0.020				
	Traffic Emissions – Steel Erection Using Helicopters Option ¹							
CO	2.10	6.6	1.70	0.050				
NO _x	4.50	13.5	3.40	0.100				
PM_{10}	0.30	0.9	0.20	0.010				
PM _{2.5}	0.30	0.7	0.20	0.010				
SO_2	0.04	0.1	0.03	0.001				
VOC	0.80	2.0	0.50	0.020				

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers SO_2 = Sulfur dioxide

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

TABLE D-9 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT-B AND ROUTE VARIATIONS					
Dallada ad					
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons) thmoving and Gra	Tons Per Mile of Transmission Line	
PM ₁₀	106.40	212.7	20.50	1.570	
PM _{2.5}	10.60	21.3	2.00	0.160	
F 1V1 _{2.5}				Steel Erection Option ¹	
PM_{10}	2,582.30	4,827.1	1,019.60	39.020	
PM _{2.5}	259.80	485.7	102.60	3.930	
1 1412.5				sing Helicopters Option ¹	
PM ₁₀	2,664.60	4,652.1	946.00	38.250	
PM _{2.5}	268.10	468.1	95.20	3.850	
1 1412.5				el Erection Option ¹	
CO	53.20	115.6	15.70	0.850	
NO _x	22.80	64.5	14.20	0.470	
PM_{10}	2.10	5.1	0.90	0.040	
PM _{2.5}	2.10	5.1	0.90	0.040	
SO ₂	0.10	0.3	0.10	0.002	
VOC	4.20	8.8	1.10	0.060	
				g Helicopters Option ¹	
CO	52.90	108.4	15.70	0.820	
NO _x	22.50	57.4	14.20	0.440	
PM_{10}	2.00	4.7	0.90	0.040	
PM _{2.5}	2.00	4.7	0.90	0.040	
SO_2	0.10	0.3	0.10	0.002	
VOC	4.20	8.2	1.10	0.060	
	Helicopt	er Emissions – C	Conventional Steel 1	Erection Option ¹	
CO	0.00	1.9	1.10	0.010	
NO _x	0.00	2.8	1.50	0.020	
PM_{10}	0.00	0.1	0.04	0.001	
PM _{2.5}	0.00	0.1	0.04	0.001	
SO_2	0.00	0.4	0.20	0.003	
VOC	0.00	1.5	0.90	0.010	
	Helicopter	Emissions - Ste	el Erection Using H	Ielicopters Option ¹	
CO	0.00	3.2	1.10	0.020	
NO_x	0.00	5.1	1.50	0.030	
PM_{10}	0.00	0.1	0.04	0.001	
PM _{2.5}	0.00	0.1	0.04	0.001	
SO_2	0.00	0.6	0.20	0.004	
VOC	0.00	2.6	0.90	0.020	
Traffic Emissions – Conventional Steel Erection Option ¹					
CO	2.20	7.1	1.90	0.050	
NO_x	4.70	14.5	3.80	0.110	
PM_{10}	0.30	1.0	0.30	0.010	
PM _{2.5}	0.30	0.8	0.20	0.010	
SO_2	0.05	0.1	0.03	0.001	
VOC	0.80	2.2	0.60	0.020	

CRITERI	TABLE D-9 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR					
	ALTE	RNATIVE COU'	T-B AND ROUTE	VARIATIONS		
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line		
	Traffic I	Emissions – Steel	Erection Using Hel	licopters Option ¹		
CO	2.20	6.9	1.80	0.050		
NO_x	4.70	14.1	3.50	0.100		
PM_{10}	0.30	1.0	0.20	0.010		
PM _{2.5}	0.30	0.8	0.20	0.010		
SO_2	0.05	0.1	0.03	0.001		
VOC	0.80	2.1	0.60	0.020		

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers

 $SO_2 = Sulfur dioxide$

		T	ABLE D-10			
CRITERI	CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR					
			T-C AND ROUTE			
Pollutant	Year 1 (tons)	()	Year 3 (tons)	Tons Per Mile of Transmission Line		
			thmoving and Gra			
PM_{10}	108.30	216.7	20.80	1.650		
PM _{2.5}	10.80	21.7	2.10	0.160		
	Paved and U	npaved Road Dus	t – Conventional S	teel Erection Option ¹		
PM_{10}	2,508.10	4,688.5	990.30	39.020		
PM _{2.5}	252.40	471.8	99.70	3.930		
	Paved and Unp	aved Road Dust -	- Steel Erection Us	ing Helicopters Option ¹		
PM_{10}	2,588.10	4,518.6	918.80	38.250		
$PM_{2.5}$	260.40	454.7	92.50	3.850		
	Nonroad E	ngine Emissions -	- Conventional Ste	el Erection Option ¹		
CO	51.60	112.3	15.20	0.850		
NO_x	22.10	62.7	13.80	0.470		
PM_{10}	2.00	5.0	0.90	0.040		
$PM_{2.5}$	2.00	5.0	0.90	0.040		
SO_2	0.10	0.3	0.10	0.002		
VOC	4.10	8.5	1.00	0.060		
	Nonroad Engine Emissions – Steel Erection Using Helicopters Option ¹					
CO	51.40	105.3	15.20	0.820		
NO _x	21.90	55.7	13.80	0.440		
PM_{10}	2.00	4.6	0.90	0.040		
PM _{2.5}	2.00	4.6	0.90	0.040		
SO_2	0.10	0.3	0.10	0.002		
VOC	4.00	8.0	1.00	0.060		

TABLE D-10 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR						
CRITER	ALTERNATIVE COUT-C AND ROUTE VARIATIONS					
Pollutant	Year 1 (tons)	\ /		Tons Per Mile of Transmission Line		
	Helicop	ter Emissions – C	onventional Steel 1	Erection Option ¹		
CO	0.00	1.9	1.00	0.010		
NO_x	0.00	2.7	1.50	0.020		
PM_{10}	0.00	0.1	0.04	0.001		
$PM_{2.5}$	0.00	0.1	0.04	0.001		
SO_2	0.00	0.3	0.20	0.003		
VOC	0.00	1.5	0.80	0.010		
	Helicopter	r Emissions – Stee	el Erection Using H	Ielicopters Option ¹		
CO	0.00	3.1	1.00	0.020		
NO_x	0.00	4.9	1.50	0.030		
PM_{10}	0.00	0.1	0.04	0.001		
$PM_{2.5}$	0.00	0.1	0.04	0.001		
SO_2	0.00	0.6	0.20	0.004		
VOC	0.00	2.5	0.80	0.020		
	Traffi	c Emissions – Co	nventional Steel Er	rection Option ¹		
CO	2.20	6.9	1.90	0.050		
NO_x	4.60	14.1	3.70	0.110		
PM_{10}	0.30	1.0	0.30	0.010		
$PM_{2.5}$	0.30	0.8	0.20	0.010		
SO_2	0.04	0.1	0.03	0.001		
VOC	0.80	2.1	0.60	0.020		
	Traffic Emissions – Steel Erection Using Helicopters Option ¹					
CO	2.20	6.7	1.70	0.050		
NO_x	4.60	13.7	3.40	0.100		
PM_{10}	0.30	0.9	0.20	0.010		
$PM_{2.5}$	0.30	0.8	0.20	0.010		
SO_2	0.04	0.1	0.03	0.001		
VOC	0.80	2.1	0.60	0.020		

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers SO_2 = Sulfur dioxide

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

TABLE D-11 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT-H							
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line			
	Fugitiv	ve Dust from Ear	thmoving and Grad	ding Activities			
PM_{10}	99.20	198.4	19.10	1.580			
PM _{2.5}	9.90	19.8	1.90	0.160			
	Paved and Unpaved Road Dust – Conventional Steel Erection Option ¹						
PM_{10}	2,398.20	4,482.9	946.90	39.020			
PM _{2.5}	241.30	451.1	95.30	3.930			
	Paved and Unpa	aved Road Dust -	- Steel Erection Usi	ing Helicopters Option ¹			
PM_{10}	2,474.70	4,320.4	878.50	38.250			
PM _{2.5}	249.00	434.7	88.40	3.850			
	Nonroad E	ngine Emissions -	- Conventional Stee	el Erection Option ¹			
CO	49.40	107.4	14.50	0.850			
NO _x	21.10	59.9	13.20	0.470			
PM_{10}	1.90	4.8	0.90	0.040			
PM _{2.5}	1.90	4.8	0.90	0.040			
SO_2	0.10	0.3	0.10	0.002			
VOC	3.90	8.1	1.00	0.060			
	Nonroad Eng	ine Emissions – S	teel Erection Using	g Helicopters Option ¹			
CO	49.10	100.7	14.50	0.820			
NO_x	20.90	53.3	13.20	0.440			
PM_{10}	1.90	4.4	0.90	0.040			
PM _{2.5}	1.90	4.4	0.90	0.040			
SO_2	0.10	0.2	0.10	0.002			
VOC	3.90	7.7	1.00	0.060			
	Helicopt	er Emissions – Co	onventional Steel E	Erection Option ¹			
CO	0.00	1.8	1.00	0.010			
NO_x	0.00	2.6	1.40	0.020			
PM_{10}	0.00	0.1	0.04	0.001			
$PM_{2.5}$	0.00	0.1	0.04	0.001			
SO_2	0.00	0.3	0.20	0.003			
VOC	0.00	1.4	0.80	0.010			
	Helicopter	Emissions – Stee	l Erection Using H	elicopters Option ¹			
CO	0.00	3.0	1.00	0.020			
NO_x	0.00	4.7	1.40	0.030			
PM_{10}	0.00	0.1	0.04	0.001			
PM _{2.5}	0.00	0.1	0.04	0.001			
SO_2	0.00	0.6	0.20	0.004			
VOC	0.00	2.4	0.80	0.020			
	Traffic Emissions – Conventional Steel Erection Option ¹						
CO	2.10	6.6	1.80	0.050			
NO_x	4.40	13.4	3.50	0.110			
PM_{10}	0.30	0.9	0.20	0.010			
PM _{2.5}	0.20	0.7	0.20	0.010			
SO_2	0.04	0.1	0.03	0.001			
VOC	0.80	2.0	0.60	0.020			

CRITERI	TABLE D-11 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR				
		ALTERN	NATIVE COUT-H		
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line	
	Traffic I	Emissions – Steel	Erection Using Hel	licopters Option ¹	
CO	2.10	6.4	1.70	0.050	
NO_x	4.40	13.1	3.30	0.100	
PM_{10}	0.30	0.9	0.20	0.010	
PM _{2.5}	0.20	0.7	0.20	0.010	
SO_2	0.04	0.1	0.03	0.001	
VOC	0.80	2.0	0.50	0.020	

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers

 $SO_2 = Sulfur dioxide$

		TA	ABLE D-12			
CRITER	CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR					
			NATIVE COUT-I			
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line		
			hmoving and Gra			
PM_{10}	117.8	235.6	22.70	1.570		
PM _{2.5}	11.8	23.6	2.30	0.160		
				teel Erection Option ¹		
PM_{10}	2,871.6	5,367.9	1,133.80	39.020		
$PM_{2.5}$	289.0	540.1	114.10	3.930		
	Paved and Unp	aved Road Dust -	Steel Erection Us	ing Helicopters Option ¹		
PM_{10}	2,963.2	5,173.3	1,052.00	38.250		
$PM_{2.5}$	298.2	520.6	105.90	3.850		
	Nonroad E	ngine Emissions –	Conventional Ste	el Erection Option ¹		
CO	59.1	128.6	17.40	0.850		
NO_x	25.3	71.7	15.80	0.470		
PM_{10}	2.3	5.7	1.00	0.040		
PM _{2.5}	2.3	5.7	1.00	0.040		
SO_2	0.1	0.3	0.10	0.002		
VOC	4.6	9.8	1.20	0.060		
	Nonroad Engine Emissions – Steel Erection Using Helicopters Option ¹					
CO	58.8	120.6	17.40	0.820		
NO _x	25.0	63.8	15.80	0.440		
PM_{10}	2.3	5.2	1.00	0.040		
PM _{2.5}	2.3	5.2	1.00	0.040		
SO_2	0.1	0.3	0.10	0.002		
VOC	4.6	9.2	1.20	0.060		

TABLE D-12 CRITERIA POLLUTANT EMISSIONS FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT-I						
Pollutant	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line		
	Helicop	ter Emissions – Co	onventional Steel I	Erection Option ¹		
CO	0.0	2.6	1.20	0.010		
NO_x	0.0	3.7	1.70	0.020		
PM_{10}	0.0	0.1	0.05	0.001		
$PM_{2.5}$	0.0	0.1	0.05	0.001		
SO_2	0.0	0.5	0.20	0.003		
VOC	0.0	2.1	1.00	0.010		
	Helicopter	· Emissions – Stee	l Erection Using H	Telicopters Option ¹		
CO	0.0	3.6	1.20	0.020		
NO_x	0.0	5.6	1.70	0.030		
PM_{10}	0.0	0.2	0.05	0.001		
$PM_{2.5}$	0.0	0.2	0.05	0.001		
SO_2	0.0	0.7	0.20	0.004		
VOC	0.0	2.9	1.00	0.020		
		c Emissions - Con	ventional Steel Er	ection Option ¹		
CO	2.5	7.9	2.10	0.050		
NO_x	5.3	16.1	4.20	0.110		
PM_{10}	0.4	1.1	0.30	0.010		
PM _{2.5}	0.3	0.9	0.20	0.010		
SO_2	0.1	0.1	0.03	0.001		
VOC	0.9	2.4	0.70	0.020		
	Traffic Emissions – Steel Erection Using Helicopters Option ¹					
CO	2.5	7.7	2.00	0.050		
NO_x	5.3	15.7	3.90	0.100		
PM_{10}	0.4	1.1	0.30	0.010		
PM _{2.5}	0.3	0.9	0.20	0.010		
SO_2	0.1	0.1	0.03	0.001		
VOC	0.9	2.4	0.60	0.020		

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers SO_2 = Sulfur dioxide

¹Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

TABLE D-13 GREENHOUSE GAS EMISSIONS (CARBON DIOXIDE EQUIVALENT) FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE WYCO-B AND ROUTE VARIATIONS

				Tons Per Mile of
Area of Emissions	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Transmission Line
Conventional Steel Erection Option				
Nonroad Engine	4,695.6	9,728.8	1,151.4	76.17
Helicopter	131.2	1,279.6	213.3	7.94
Traffic	2,215.6	4,119.4	637.1	34.09
	Steel Erecti	on Using Helicopte	rs Option	
Nonroad Engine	4,480.1	7,622.1	872.3	63.45
Helicopter	816.3	1,390.1	213.3	11.83
Traffic	2,245.2	3,913.4	607.0	33.08

NOTE: Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

TABLE D-14 GREENHOUSE GAS EMISSIONS (CARBON DIOXIDE EQUIVALENT) FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE WYCO-C AND ROUTE VARIATIONS

TORINETERMITTYE WIFE CHINE ROOTE VIRGITIONS					
Area of Emissions	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line	
THE OF EMISSIONS		onal Steel Erection	` ′		
Nonroad Engine	4,831.1	10,009.5	1,184.6	76.17	
Helicopter	135.0	1,316.5	219.4	7.94	
Traffic	2,279.5	4,238.2	655.5	34.09	
Steel Erection Using Helicopters Option					
Nonroad Engine	4,609.3	7,842.0	897.5	63.45	
Helicopter	839.8	1,430.2	219.4	11.83	
Traffic	2,310.0	4,026.3	624.5	33.08	

NOTE: Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

TABLE D-15 GREENHOUSE GAS EMISSIONS (CARBON DIOXIDE EQUIVALENT) FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE WYCO-D AND ROUTE VARIATION

TOWNETERNATIVE WICO BINAD ROOTE VIRGINION					
				Tons Per Mile of	
Area of Emissions	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Transmission Line	
	Conventional Steel Erection Option				
Nonroad Engine	5,740.4	11,893.4	1,407.5	76.17	
Helicopter	160.4	1,564.3	260.7	7.94	
Traffic	2,708.6	5,035.9	778.9	34.09	
	Steel Erecti	on Using Helicopte	rs Option		
Nonroad Engine	5,476.9	9,317.9	1,066.4	63.45	
Helicopter	997.9	1,699.3	260.7	11.83	
Traffic	2,744.8	4,784.2	742.1	33.08	

TABLE D-16 GREENHOUSE GAS EMISSIONS (CARBON DIOXIDE EQUIVALENT) FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE WYCO-F AND ROUTE VARIATIONS

				Tons Per Mile of
Area of Emissions	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Transmission Line
	Conventi	onal Steel Erection	Option	
Nonroad Engine	5,026.3	10,413.9	1,232.4	76.17
Helicopter	140.5	1,369.7	228.3	7.94
Traffic	2,371.6	4,409.4	682.0	34.09
	Steel Erecti	on Using Helicopte	rs Option	
Nonroad Engine	4,795.6	8,158.8	933.8	63.45
Helicopter	873.8	1,487.9	228.3	11.83
Traffic	2,403.3	4,189.0	649.8	33.08

NOTE: Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

TABLE D-17 GREENHOUSE GAS EMISSIONS (CARBON DIOXIDE EQUIVALENT) FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT BAX-B

Area of Emissions	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Tons Per Mile of Transmission Line	
Conventional Steel Erection Option					
Nonroad Engine	5,691.4	16,759.3	3,572.8	93.21	
Helicopter	0.0	1,451.5	808.9	8.10	
Traffic	2,607.7	7,126.0	1,913.2	41.72	
Steel Erection Using Helicopters Option					
Nonroad Engine	5,627.4	14,562.0	2,666.7	81.86	
Helicopter	0.0	2,558.8	808.9	12.06	
Traffic	2,607.7	6,985.3	1,815.4	40.86	

NOTE: Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

TABLE D-18 GREENHOUSE GAS EMISSIONS (CARBON DIOXIDE EQUIVALENT) FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT BAX-C

FOR TRAINSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT DAX-C						
				Tons Per Mile of		
Area of Emissions	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Transmission Line		
	Conventi	onal Steel Erection	Option			
Nonroad Engine	5,905.4	17,389.6	3,707.2	93.21		
Helicopter	0.0	1,506.1	839.3	8.10		
Traffic	2,705.8	7,394.0	1,985.2	41.72		
	Steel Erection Using Helicopters Option					
Nonroad Engine	5,839.0	15,109.7	2,767.0	81.86		
Helicopter	0.0	2,655.0	839.3	12.06		
Traffic	2,705.8	7,248.0	1,883.7	40.86		

TABLE D-19							
GREENH	OUSE GAS EMISS	SIONS (CARBON)	DIOXIDE EQUIV	ALENT)			
FOR TRANSMI	SSION LINE CON	STRUCTION FOR	R ALTERNATIVE	E COUT BAX-E			
	Tons Per Mile of						
Area of Emissions	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Transmission Line			
Conventional Steel Erection Option							
Nonroad Engine	5,942.1	17,497.7	3,730.2	93.21			
Helicopter	0.0	1,515.5	844.5	8.10			
Traffic	2,722.6	7,439.9	1,997.5	41.72			
Steel Erection Using Helicopters Option							
Nonroad Engine	5,875.3	15,203.5	2,784.2	81.86			
Helicopter	0.0	2,671.5	844.5	12.06			
Traffic	2,722.6	7,293.1	1,895.4	40.86			

NOTE: Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

		TABLE D-20		
GREENH	OUSE GAS EMIS	SIONS (CARBON)	DIOXIDE EOUIV	ALENT)
		ISSION LINE CON		
FO	R ALTERNATIVE	E COUT-A AND RO	OUTE VARIATIO)N
				Tons/Mile of
Area of Emissions	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Transmission Line
	Conventi	onal Steel Erection	Option	
Nonroad Engine	4,199.2	12,365.4	2,636.1	93.21
Helicopter	0.0	1,071.0	596.8	8.10
Traffic	1,924.0	5,257.7	1,411.6	41.72
	Steel Erecti	ion Using Helicopte	rs Option	
Nonroad Engine	4,152.0	10,744.2	1,967.5	81.86
Helicopter	0.0	1,887.9	596.8	12.06
Traffic	1,924.0	5,153.9	1,339.5	40.86
NOTE: Emissions would occur	r from construction act	tivities including either	steel erection using k	palicopters or conventional

NOTE: Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

TABLE D-21 GREENHOUSE GAS EMISSIONS (CARBON DIOXIDE EQUIVALENT) FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT-B AND ROUTE VARIATIONS					
Area of Emissions Year 1 (tons) Year 2 (tons) Year 3 (tons) Tons Per Mile of Transmission Line					
	Conventi	onal Steel Erection	Option		
Nonroad Engine	4,403.1	12,965.7	2,764.1	93.21	
Helicopter	0.0	1,123.0	625.8	8.10	
Traffic	2,017.4	5,512.9	1,480.1	41.72	
	Steel Erecti	on Using Helicopte	rs Option		
Nonroad Engine	4,353.6	11,265.7	2,063.0	81.86	
Helicopter	0.0	1,979.6	625.8	12.06	
Traffic	2,017.4	5,404.1	1,404.5	40.86	
NOTE: Emissions would occur	from construction act	ivities including either	steel erection using h	elicopters or conventional	

TABLE D-22 GREENHOUSE GAS EMISSIONS (CARBON DIOXIDE EQUIVALENT) FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT-C AND ROUTE VARIATIONS

				Tons Per Mile of		
Area of Emissions	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Transmission Line		
	Conventional Steel Erection Option					
Nonroad Engine	4,276.7	12,593.5	2,684.7	93.21		
Helicopter	0.0	1,090.7	607.8	8.10		
Traffic	1,959.5	5,354.7	1,437.6	41.72		
	Steel Erecti	on Using Helicopte	rs Option			
Nonroad Engine	4,228.6	10,942.4	2,003.8	81.86		
Helicopter	0.0	1,922.8	607.8	12.06		
Traffic	1,959.5	5,249.0	1,364.2	40.86		

NOTE: Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

TABLE D-23	
GREENHOUSE GAS EMISSIONS (CARBON DIOXIDE EQUIVALENT)	
FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT-	H

				Tons Per Mile of	
Area of Emissions	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Transmission Line	
Conventional Steel Erection Option					
Nonroad Engine	4,089.2	12,041.3	2,567.0	93.21	
Helicopter	0.0	1,042.9	581.2	8.10	
Traffic	1,873.6	5,119.9	1,374.6	41.72	
	Steel Erecti	on Using Helicopte	rs Option		
Nonroad Engine	4,043.2	10,462.5	1,916.0	81.86	
Helicopter	0.0	1,838.5	581.2	12.06	
Traffic	1,873.6	5,018.8	1,304.3	40.86	

NOTE: Emissions would occur from construction activities including either steel erection using helicopters or conventional steel erection, not both. Emissions above include all activities, not just steel erection.

TABLE D-24 GREENHOUSE GAS EMISSIONS (CARBON DIOXIDE EQUIVALENT) FOR TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT-I

				Tons Per Mile of				
Area of Emissions	Year 1 (tons)	Year 2 (tons)	Year 3 (tons)	Transmission Line				
Conventional Steel Erection Option								
Nonroad Engine	4,896.4	14,418.3	3,073.7	93.21				
Helicopter	0.0	1,518.1	695.9	8.10				
Traffic	2,243.5	6,130.6	1,646.0	41.72				
	Steel Erection Using Helicopters Option							
Nonroad Engine	4,841.3	12,527.9	2,294.2	81.86				
Helicopter	0.0	2,201.4	695.9	12.06				
Traffic	2,243.5	6,009.6	1,561.8	40.86				

TABLE D-25									
CRITERIA POLLUTANT EMISSIONS FOR SERIES COMPENSATION STATIONS									
(EACH SERIES COMPENSATION STATION)									
D. Hardani 4	Year 1	Year 2	Year 3						
Pollutant	(tons)	(tons)	(tons)						
Fugitive Dust from Earthmoving and Grading Activities									
PM_{10}	1.900	4.000	0.0000						
PM _{2.5}	0.200	0.400	0.0000						
	Paved and Unpave	d Road Dust							
PM_{10}	1.400	4.300	3.4000						
$PM_{2.5}$	0.100	0.400	0.4000						
Nonroad Engine Emissions									
CO	5.600	9.900	6.6000						
NO_x	5.000	5.400	6.3000						
PM_{10}	0.300	0.40	0.4000						
$PM_{2.5}$	0.300	0.40	0.4000						
SO_2	0.010	0.010	0.0100						
VOC	0.400	0.900	0.5000						
	Traffic Emis	ssions							
CO	0.030	0.040	0.0300						
NO_x	0.070	0.090	0.0600						
PM_{10}	0.010	0.010	0.0040						
PM _{2.5}	0.004	0.010	0.0030						
SO_2	0.001	0.001	0.0004						
VOC	0.010	0.020	0.0100						

CO = Carbon monoxide

 NO_x = Nitrogen oxides $PM_{2.5}$ = Particulate matter less than 2.5 micrometers PM_{10} = Particulate matter less than 10 micrometers SO_2 = Sulfur dioxide VOC = Volatile organic compounds

TABLE D-26						
GREENHOUSE GAS EMISSIONS (CARBON DIOXIDE EQUIVALNT) FOR SERIES						
COMPENSATION STATIONS (EACH SERIES COMPENSATION STATION)						
Area of Emissions Year 1 (tons) Year 2 (tons) Year 3 (tons						
Nonroad Engine	948.8	887.7	1,179.0			
Traffic	35.4	53.6	24.5			

D.2 Modeling Results Summary Tables – Transmission Line and Series Compensation Station Construction

FOR AL	TABLE D-27 MODELING RESULTS – TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVES WYCO-B, WYCO-C, WYCO-D, AND WYCO-F AND ROUTE VARIATIONS								
Pollutant	Averaging Period	Maximum AERSCREEN Concentration (μg/m³)	Background Concentration (µg/m³)	Project Impact plus Background (µg/m³)	Limiting Standard (µg/m³)	Comments			
NO ₂	1-hour	1,307.2	55.7	1,362.9	188.7	May exceed the numerical value of the standards			
PM ₁₀	24-hour	62.5	58.4	120.9	150.0	Below all ambient air quality standards			
PM _{2.5}	24-hour	8.2	13.2	21.4	35.0	Below all ambient air quality standards			
СО	1-hour	5,758.0	1,379.3	7,137.3	40,000.0	Below all ambient air quality standards			
CO	8-hour	5,758.0	1,092.0	6,850.0	10,000.0	Below all ambient air quality standards			
50	1-hour	3.2	13.2	16.3	196.4	Below all ambient air quality standards			
SO_2	3-hour	3.2	10.3	13.4	700.0	Below all ambient air quality standards			

NOTES:

A factor of 80 percent was applied to estimated nitrogen oxides concentrations for conversion to nitrogen dioxide based on the Environmental Protection Agency's March 1, 2011, memorandum: Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-Hour NO₂ National Ambient Air Quality Standard

CO = Carbon monoxide

 NO_2 = Nitrogen dioxide

 $PM_{2.5} = Particulate matter less than 2.5 micrometers$

 PM_{10} = Particulate matter less than 10 micrometers

TABLE D-28 MODELING RESULTS – TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVES COUT BAX-B, COUT BAX-C, AND COUT BAX-E								
Pollutant	Averaging Period	Maximum AERSCREEN Concentration (μg/m³)	Background Concentration (µg/m³)	Project Impact plus Background (µg/m³)	Limiting Standard (µg/m³)	Comments		
NO ₂	1-hour	1,307.2	73.7	1,380.9	188.7	May exceed the numerical value of the standards		
PM_{10}	24-hour	62.5	78.8	141.4	150.0	Below all ambient air quality standards		
PM _{2.5}	24-hour	8.2	19.9	28.1	35.0	Below all ambient air quality standards		
CO	1-hour	5,758.0	1,954.0	7,712.0	40,000.0	Below all ambient air quality standards		
СО	8-hour	5,758.0	1,264.4	7,022.4	10,000.0	Below all ambient air quality standards		

TABLE D-28
MODELING RESULTS – TRANSMISSION LINE CONSTRUCTION
FOR ALTERNATIVES COUT BAX-B, COUT BAX-C, AND COUT BAX-E

Pollutant	Averaging Period	Maximum AERSCREEN Concentration (μg/m³)	Background Concentration (µg/m³)	Project Impact plus Background (µg/m³)	Limiting Standard (µg/m³)	Comments
50	1-hour	3.2	7.9	11.1	196.4	Below all ambient air quality standards
SO_2	3-hour	3.2	7.9	11.1	700.0	Below all ambient air quality standards

A factor of 80 percent was applied to estimated nitrogen oxides concentrations for conversion to nitrogen dioxide based on the Environmental Protection Agency's March 1, 2011, memorandum: Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-Hour NO₂ National Ambient Air Quality Standard

CO = Carbon monoxide $NO_2 = Nitrogen dioxide$

 $PM_{2.5}$ = Particulate matter less than 2.5 micrometers

PM₁₀ = Particulate matter less than 10 micrometers

 $SO_2 = Sulfur dioxide$

TABLE D-29 MODELING RESULTS – TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT-A AND ROUTE VARIATION AND ALTERNATIVE COUT-B AND ROUTE VARIATIONS (EXCEPT UTAH COUNTY PM₁₀)

Pollutant	Averaging Period	Maximum AERSCREEN Concentration (μg/m³)	Background Concentration (µg/m³)	Project Impact plus Background (µg/m³)	Limiting Standard (µg/m³)	Comments
NO ₂	1-hour	1,307.2	93.0	1,400.2	188.7	May exceed the numerical value of the standards
PM_{10}	24-hour	62.5	78.8	141.4	150.0	Below all ambient air quality standards
PM _{2.5}	24-hour	8.2	19.8	28.0	35.0	Below all ambient air quality standards
CO	1-hour	5,758.0	4,367.8	10,125.8	40,000.0	Below all ambient air quality standards
СО	8-hour	5,758.0	1,724.1	7,482.1	10,000.0	Below all ambient air quality standards
90	1-hour	3.2	7.9	11.1	196.4	Below all ambient air quality standards
SO_2	3-hour	3.2	7.9	11.1	700.0	Below all ambient air quality standards

NOTES:

A factor of 80 percent was applied to estimated nitrogen oxides concentrations for conversion to nitrogen dioxide based on the Environmental Protection Agency's March 1, 2011, memorandum: Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-Hour NO₂ National Ambient Air Quality Standard

CO = Carbon monoxide

 NO_2 = Nitrogen dioxide

 $PM_{2.5}$ = Particulate matter less than 2.5 micrometers

 PM_{10} = Particulate matter less than 10 micrometers

TABLE D-30

MODELING RESULTS – TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT-A AND ROUTE VARIATION (UTAH COUNTY), ALTERNATIVE COUT-B AND ROUTE VARIATIONS (UTAH COUNTY), AND ALTERNATIVE COUT-C AND ROUTE VARIATIONS (UTAH COUNTY)

Pollutant	Averaging Period	Maximum AERSCREEN Concentration (μg/m³)	Background Concentration (µg/m³)	Project Impact plus Background (µg/m³)	Limiting Standard (µg/m³)	Comments
PM_{10}	24-hour	62.5	49.5	112.0	150.0	Below all ambient air quality standards

NOTE: PM_{10} = Particulate matter less than 10 micrometers

TABLE D-31 MODELING RESULTS – TRANSMISSION LINE CONSTRUCTION FOR ALTERNATIVE COUT-C AND ROUTE VARIATIONS AND ALTERNATIVES COUT-H AND COUT-I (EXCEPT UTAH COUNTY PM₁₀)

Pollutant	Averaging Period	Maximum AERSCREEN Concentration (μg/m³)	Background Concentration (μg/m³)	Project Impact plus Background (µg/m³)	Limiting Standard (µg/m³)	Comments
NO_2	1-hour	1,307.2	67.0	1,374.2	188.7	May exceed the numerical value of the standards
PM_{10}	24-hour	62.5	78.8	141.4	150.0	Below all ambient air quality standards
PM _{2.5}	24-hour	8.2	14.5	22.7	35.0	Below all ambient air quality standards
CO	1-hour	5,758.0	4,367.8	10,125.8	40,000.0	Below all ambient air quality standards
CO	8-hour	5,758.0	1,724.1	7,482.1	10,000.0	Below all ambient air quality standards
80	1-hour	3.2	7.9	11.1	196.4	Below all ambient air quality standards
SO_2	3-hour	3.2	7.9	11.1	700.0	Below all ambient air quality standards

NOTES:

A factor of 80 percent was applied to estimated nitrogen oxides concentrations for conversion to nitrogen dioxide based on the Environmental Protection Agency's March 1, 2011 memorandum: *Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-Hour NO₂ National Ambient Air Quality Standard*

CO = Carbon monoxide

 NO_2 = Nitrogen dioxide

 $PM_{2.5}$ = Particulate matter less than 2.5 micrometers

 PM_{10} = Particulate matter less than 10 micrometers

TABLE D-32 MODELING RESULTS – SERIES COMPENSATION STATION CONSTRUCTION EACH SERIES COMPENSATION STATION								
Pollutant	Averaging Period	Maximum AERSCREEN Concentration (μg/m³)	Background Concentration (µg/m³)	Project Impact plus Background (µg/m³)	Limiting Standard (µg/m³)	Comments		
NO_2	1-hour	4,950.4	67.0	5,017.4	188.7	May exceed the numerical value of the standards		
PM_{10}	24-hour	20.5	78.8	99.3	150.0	Below all ambient air quality standards		
PM _{2.5}	24-hour	7.1	14.5	21.6	35.0	Below all ambient air quality standards		
СО	1-hour	4,524.0	4,367.8	8,891.8	40,000.0	Below all ambient air quality standards		
	8-hour	4,524.0	1,724.1	6,248.1	10,000.0	Below all ambient air quality standards		
	1-hour	11.4	7.9	19.3	196.4	Below all ambient air quality standards		
SO_2	3-hour	11.4	7.9	19.3	700.0 (Colorado) 1,300 (Utah)	Below all ambient air quality standards		

A factor of 80 percent was applied to estimated nitrogen oxides concentrations for conversion to nitrogen dioxide based on the Environmental Protection Agency's March 1, 2011, memorandum: Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-Hour NO₂ National Ambient Air Quality Standard

CO = Carbon monoxide

 $NO_2 = Nitrogen dioxide$ $PM_{2.5} = Particulate matter less than 2.5 micrometers$ $PM_{10} = Particulate matter less than 10 micrometers$

